

Clinical decision support (CDS) and predictive modeling for process management

Knut Magne Augestad, MD

Norwegian National Center of Telemedicine and
Integrated Care

CIO forum IT Helse Oslo 24 Mai

Background

Mistakes do happen (sometimes!)

EMR for outcome assessment

Complications do happen (often!!)

Use the past to predict the future

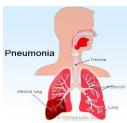
What is the purpose of the EMR?

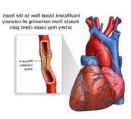
Natural Language Processing

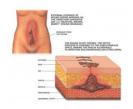
Colorectal resection has a complication rate of 20%-30%

Kehlet H. Fast-track colorectal surgery. Lancet. 2008;371:791-793.

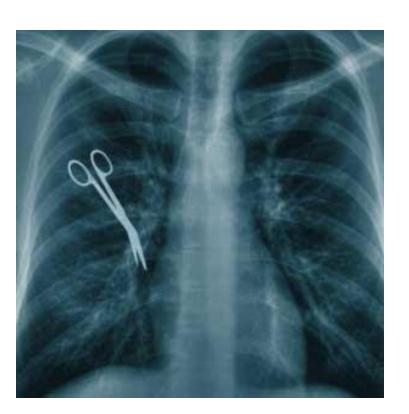
- Anastomosis leakage
- Pulmonary embolism
- Deep vein thrombosis
- Respiratory distress
- Pneumonia
- Myocardial infarction
- Wound infection







Medical errors do certainly (and unfortunately) happen.....



ONLINE FIRST

Incorrect Surgical Procedures Within and Outside of the Operating Room

A Follow-up Report

Julia Neily, RN, MS, MPH; Peter D. Mills, PhD, MS; Noel Eldridge, MS; Brian T. Carney, MD; Debora Pfeffer, RN, MBA; James R. Turner, BS; Yinong Young-Xu, ScD, MA, MS; William Gunnar, MD, JD; James P. Bagian, MD, PE

Objective: To describe incorrect surgical procedures reported from mid-2006 to 2009 from Veterans Health Administration medical centers and build on previously reported events from 2001 to mid-2006.

Design: Retrospective database review.

Setting: Veterans Health Administration medical centers.

Interventions: The Veterans Health Administration implemented Medical Team Training and continues to support their directive for ensuring correct surgery to improve surgical patient safety.

Main Outcome Measures: The categories were incorrect procedure types (wrong patient, side, site, procedure, or implant), major or minor surgery, in or out of the operating room (OR), adverse event or close call, specialty, and harm.

Results: Our review produced 237 reports (101 adverse events, 136 close calls) and found decreased harm

compared with the previous report. The rate of reported adverse events decreased from 3.21 to 2.4 per month (P=.02). Reported close calls increased from 1.97 to 3.24 per month (P≤.001). Adverse events were evenly split between OR (50) and non-OR (51). When in-OR events were examined as a rate, Neurosurgery had 1.56 and Ophthalmology had 1.06 reported adverse events per 10 000 cases. The most common root cause for adverse events was a lack of standardization of clinical processes (18%).

Conclusions: The rate of reported adverse events and harm decreased, while reported close calls increased. Despite improvements, we aim to achieve further gains. Current plans and actions include sharing lessons learned from root cause analyses, policy changes based on root cause analysis review, and additional focused Medical Team Training as needed.

Arch Surg. 2011;146(11):1235-1239. Published online July 18, 2011. doi:10.1001/archsurg.2011.171

Focus on outcomes and quality do matter

- Stulberg et al
- 405 000 surgical discharges
- 600 hospitals
- Adherence to quality indicators reduces postoperative wound infections
- OR = 0.85

Adherence to Surgical Care Improvement Project Measures and the Association With Postoperative Infections

Jonah J. Stulberg, MD, PhD, MPH
Conor P. Delaney, MD, PhD
Duncan V. Neuhauser, PhD
David C. Aron, MD, MS
Pingfu Fu, PhD
Siran M. Koroukian, PhD

HE SURGICAL CARE IMPROVEment Project (SCIP), a national quality partnership dedicated to reducing the rate of surgical complications, has developed 20 measures covering various discrete elements of patient care. 1,2 There are 9 publicly reported SCIP measures, 6 of which focus on postoperative infection prevention (Box). Adoption of these measures was supported by research attesting to their efficacy; and the development and implementation of these process-of-care measures has been endorsed by the National Quality Forum and other organizations that promote improvements in the quality of medical care.1-3

Hospital participation in these data collection efforts is voluntary. However, the Centers for Medicare & Medicaid Services (CMS) reduces hospital reimbursement by 2% if they fail to report their performance on these measures.⁴⁻⁷ After validation and cleanup

Context The Surgical Care Improvement Project (SCIP) aims to reduce surgical infectious complication rates through measurement and reporting of 6 infection-prevention process-of-care measures. However, an association between SCIP performance and clinical outcomes has not been demonstrated.

Objective To examine the relationship between SCIP infection-prevention processof-care measures and postoperative infection rates.

Design, Setting, Participants A retrospective cohort study, using Premier Inc's Perspective Database for discharges between July 1, 2006 and March 31, 2008, of 405 720 patients (69% white and 11% black; 46% Medicare patients; and 68% elective surgical cases) from 398 hospitals in the United States for whom SCIP performance was recorded and submitted for public report on the Hospital Compare Web site. Three original infection-prevention measures (S-INF-Core) and all 6 infection-prevention measures (S-INF) were aggregated into 2 separate all-or-none composite scores. Hierarchical logistical models were used to assess process-of-care relationships at the patient level while accounting for hospital characteristics.

Main Outcome Measure The ability of reported adherence to SCIP infectionprevention process-of-care measures (using the 2 composite scores of S-INF and S-INF-Core) to predict postoperative infections.

Results There were 3996 documented postoperative infections. The S-INF composite process-of-care measure predicted a decrease in postoperative infection rates from 14.2 to 6.8 per 1000 discharges (adjusted odds ratio, 0.85; 95% confidence interval, 0.76-0.95). The S-INF-Core composite process-of-care measure predicted a decrease in postoperative infection rates from 11.5 to 5.3 per 1000 discharges (adjusted odds ratio, 0.86; 95% confidence interval, 0.74-1.01), which was not a statistically significantly lower probability of infection. None of the individual SCIP measures were significantly associated with a lower probability of infection.

Conclusions Among hospitals in the Premier Inc Perspective Database reporting SCIP performance, adherence measured through a global all-or-none composite infection-prevention score was associated with a lower probability of developing a postoperative infection. However, adherence reported on individual SCIP measures, which is the only form in which performance is publicly reported, was not associated with a significantly lower probability of infection.

JAMA. 2010;303(24):2479-2485

www.jama.com

Outcome research in medicine is challenging because there exists wide variation in practice

Wide international variations in cancer management.

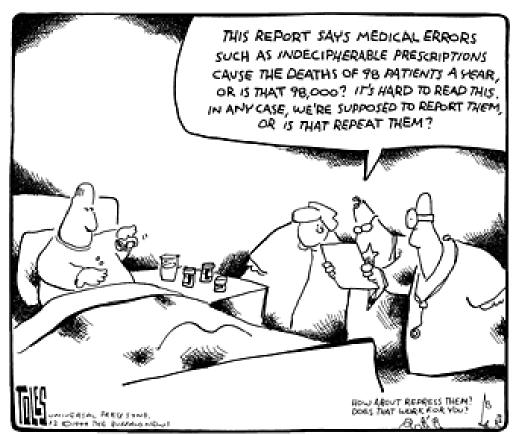
Augestad, K. M., Lindsetmo,, et al. (2011). International trends in surgical treatment of rectal cancer. American Journal of Surgery

 Influence on health care costs, side effects and survival.

Augestad, K. M., Lindsetmo et al. (2011). Preoperative Rectal Cancer Management: Wide International Practice Makes Outcome Comparison Challenging. World Journal of Surgery.

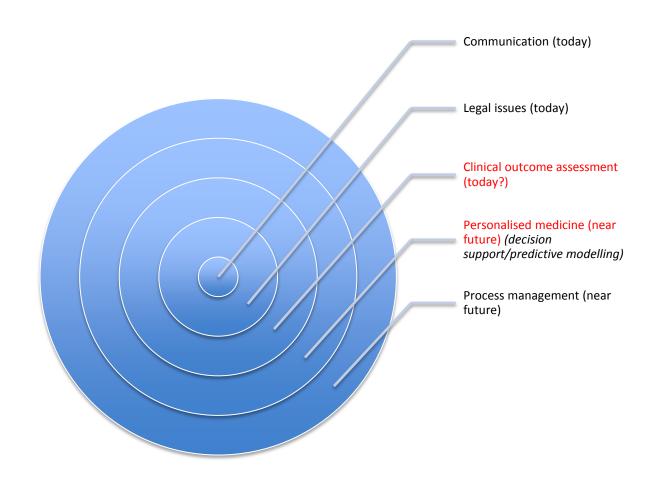
New bio statistical methods needed

Haut, E. R. (2010). Are surgeons ready to embrace a paradigm shift in surgical comparative effectiveness research. Archives of Surgery.



TOLES©1999 The Buffalo News. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

The EMR serves several different purposes



Definition of clinical decision support:

Kawamoto BMJ 2005: "any electronic or nonelectronic system designed to aid directly in clinical decision making, in which characteristics of individual patients are used to generate patient-specific assessments or recommendations that are then presented to clinicians for consideration"

CDS-factors associated with improved clinical practice

Automatic provision

At time and location

Clear recommendation

Integrated in EMR

Table 6 Features of clinical decision support systems (CDSS) associated with improved clinical practice. Results of meta-regression analyses of 71 control-CDSS comparisons

Feature*	Adjusted odds ratio (95% CI)	P value
Primary analysis (all CDSS, n=71)		
Automatic provision of decision support as part of clinician workflow	112.1 (12.9 to ∞)	<0.00001
Provision of decision support at time and location of decision making	15.4 (1.3 to 300.6)	0.0263
Provision of recommendation rather than just an assessment	7.1 (1.3 to 45.6)	0.0187
Computer based generation of decision support	6.3 (1.2 to 45.0)	0.0294
Secondary analysis (computer based (CDSS, n=49)†‡	
Automatic provision of decision support as part of clinician workflow	105.0 (10.4 to ∞)	0.00001
Secondary analysis (non-electronic CD	OSS, n=22)†§	
Provision of recommendation rather than just an assessment	19.4 (1.5 to 1263.0)	0.0164

CDS effects

- Improve patient outcome
- Improve prescribing practice
- Reduse errors
- Enhance guideline adherence
- Enhance delivery of preventive care
- Lasting improvement clinical practice

Augestad, K. M., Berntsen, G., Lassen, K., Bellika, J. G., Wootton, R., Lindsetmo, R. O., Study Group of Research Quality in Medical Informatics and Decision Support (SQUID). (2012). Standards for reporting randomized controlled trials in medical informatics: a systematic review of CONSORT adherence in RCTs on clinical decision support. *Journal of the American Medical Informatics Association : JAMIA*.

Personalized medicine is ready for the intelligent EMR

CHEST

Original Research

CRITICAL CARE

Development and Validation of a Risk Calculator Predicting Postoperative Respiratory Failure

Himani Gupta, MD; Prateek K. Gupta, MD; Xiang Fang, PhD; Weldon J. Miller, MS; Samuel Cemaj, MD; R. Armour Forse, MD, PhD; and Lee E. Morrow, MD, FCCP

GreatBigStuff

morbidity and mortality. The objective of this study was to identify preoperative factors associated with an increased risk of PRF and subsequently develop and validate a risk calculator. *Methods*: The American College of Surgeons National Surgical Quality Improvement Program (NSQIP), a multicenter, prospective data set (2007-2008), was used. The 2007 data set (n = 211,410) served as the training set and the 2008 data set (n = 257,385) as the validation set. *Results*: In the training set, 6,531 patients (3.1%) developed PRF. Patients who developed PRF had a significantly higher 30-day mortality (25.62% vs 0.98%, P < .0001). On multivariate logistic regression analysis, five preoperative predictors of PRF were identified: type of surgery, emergency case, dependent functional status, preoperative sepsis, and higher American Society of Anesthesiologists (ASA) class. The risk model based on the training data set was subsequently validated on the validation data set. The model performance was very similar between the training and the validation data sets (c-statistic, 0.894 and 0.897, respectively). The high c-statistics (area under the receiver operating characteristic curve) indicate excellent predictive performance. The risk model was used to develop an interactive risk calculator.

Background: Postoperative respiratory failure (PRF) (requiring mechanical ventilation >48 h after surgery or unplanned intubation within 30 days of surgery) is associated with significant

Conclusions: Preoperative variables associated with increased risk of PRF include type of surgery, emergency case, dependent functional status, sepsis, and higher ASA class. The validated risk calculator provides a risk estimate of PRF and is anticipated to aid in surgical decision making and informed patternent.

CHEST 2011; 140(5):1207-1215

Personalized medicine is ready for the intelligent EMR

Constipation	Diarrhoea	Rectal bleeding	Loss of Weight	Abdominal pain	Abdominal tenderness	Abnormal rectal exam	Haemoglobin 10–13 g dl ⁻¹	Haemoglobin <10 g dl ⁻¹	
0.42 0.3, 0.5	0.94 0.7, 1.1	2.4 1.9, 3.2	1.2 0.9, 1.6	1.1 0.9, 1.3	1.1 0.8, 1.5	1.5 1.0, 2.2	0.97 0.8, 1.3	2.3 1.6, 3.1	PPV as a single symptom
0.81 0.5, 1.3	1.1 0.6, 1.8	2.4 1.4, 4.4	3.0 1.7, 5.4	1.5 1.0, 2.2	1.7 0.9, 3.4	2.6	1.2 0.6, 2.7	2.6	Constipation
	1.5 1.0, 2.2	3.4 2.1, 6.0	3.1 1.8, 5.5	1.9 1.4, 2.7	2.4 1.3, 4.8	11	2.2 1.2, 4.3	2.9	Diarrhoea
		6.8	4.7	3.1 1.9, 5.3	4.5	8.5	3.6	3.2	Rectal bleeding
			1.4 0.8, 2.6	3.4 2.1, 6.0	6.4	7.4	1.3 0.7, 2.6	4.7	Loss of weight
				3.0 1.8, 5.2	1.4 0.3, 2.2	3.3	2.2 1.1, 4.5	6.9	Abdominal pain
					1.7 0.8, 3.7	5.8	2.7	>10	Abdominal tenderness

Hamilton, W., Round, A., Sharp, D., & Peters, T. J. (2005). Clinical features of colorectal cancer before diagnosis: a population-based case—control study. British Journal of Cancer, 93(4), 399–405.

Personalized medicine is ready for the intelligent EMR

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Martin R. Weiser, Mithat Gönen, Joanne F. Chou, and Deborah Schrag, Memorial Sloan-Kettering Cancer Center, New York, NY, Michael W. Kattan, Cleveland Clinic, Cleveland, OH; and Deborah Schrag, Dana-Farber

Submitted April 11, 2011; accepted September 14, 2011; published online ahead of print at www.jco.org on November 14, 2011

Cancer Center, Boston, MA.

Supported in part by a grant from the American Joint Committee on Cancer (M.R.W.) and a grant from the Society of Memorial Sloan-Kettering Cancer Center (M.R.W.).

Authors' disclosures of potential conflicts of interest and author contributions are found at the end of this article.

Corresponding author: Martin R.
Weiser, MD, Colorectal Service/Department of Surgery, Memorial SloanKettering Cancer Center, 1275 York
Ave, Room C-1075, New York, NY
10065; e-mail: weiser1@mskcc.org.

© 2011 by American Society of Clinical Oncology

0732-183X/11/2999-1/\$20.00 DOI: 10.1200/JCO.2011.36.5080

Predicting Survival After Curative Colectomy for Cancer: Individualizing Colon Cancer Staging

Martin R. Weiser, Mithat Gönen, Joanne F. Chou, Michael W. Kattan, and Deborah Schrag

ABSTRACT

Purpose

Cancer staging determines extent of disease, facilitating prognostication and treatment decision making. The American Joint Committee on Cancer (AJCC) TNM classification system is the most commonly used staging algorithm for colon cancer, categorizing patients on the basis of only these three variables (tumor, node, and metastasis). The purpose of this study was to extend the seventh edition of the AJCC staging system for colon cancer to incorporate additional information available from tumor registries, thereby improving prognostic accuracy.

Methods

Records from 128,853 patients with primary colon cancer reported to the Surveillance, Epidemiology and End Results Program from 1994 to 2005 were used to construct and validate three survival models for patients with primary curative-intent surgery. Independent training/test data sets were used to develop and test alternative models. The seventh edition TNM staging system was compared with models supplementing TNM staging with additional demographic and tumor variables available from the registry by calculating a concordance index, performing calibration, and identifying the area under receiver operating characteristic (ROC) curves.

Results

Inclusion of additional registry covariates improved prognostic estimates. The concordance index rose from 0.60 (95% CI, 0.59 to 0.61) for the AJCC model, with T- and N-stage variables, to 0.68 (95% CI, 0.67 to 0.68) for the model including tumor grade, number of collected metastatic lymph nodes, age, and sex. ROC curves for the extended model had higher sensitivity, at all values of specificity, than the TNM system; calibration curves indicated no deviation from the reference line.

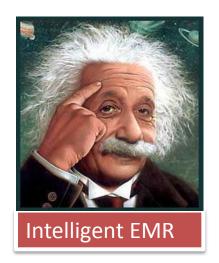
Conclusion

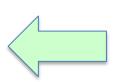
Prognostic models incorporating readily available data elements outperform the current AJCC system. These models can assist in personalizing treatment and follow-up for patients with colon cancer.

J Clin Oncol 29. © 2011 by American Society of Clinical Oncology

Predictive modelling

Outcome assessment: Times they are changing......



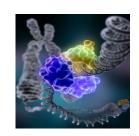


Personalised medicine

Registries

Statistical modelling

EMR data



Autumn 2011 two of the big five discuss analyses of **EMR** data

Perspective

Evidence-Based Medicine in the EMR Era

Jennifer Frankovich, M.D., Christopher A. Longhurst, M.D., and Scott M. Sutherland, M.D.

Many physicians take great pride in the practice approach, using the data captured in our institutions electronic median education emphasizes the value of the randomized, controlled trial, and we learn early on not to rely on

on which to draw?

to our service a 13-year-old girl sensus. with systemic lupus erythematotion was complicated by nephrotic-sion swiftly, we turned to a new among patients who had persis-

anecdotal evidence. But the appli- range proteinuria, antiphospholipid can be constrained by trials' strict standard practice for children our hospital and provides immeinclusion and exclusion criteria with SLE even when they're criti- diate advanced text searching caeven meager data available and A survey of our pediatric rheu- ric SLE and exists under a protoof our collective Level V evidence, review board. We recently found ourselves in so to speak - was equally fruitsuch a situation as we admitted less and failed to produce a con-

ical record (EMR) and an innovative research data warehouse. The platform, called the Stanford Translational Research Integrated Database Environment (STRIDE). cation of such superior evidence, antibodies, and pancreatitis. Al- acquires and stores all patient however admirable the ambition. though anticoagulation is not data contained in the EMR at - or the complete absence of a cally ill, these additional factors pability.1 Through STRIDE, we relevant trial. For those of us put our patient at potential risk could rapidly review data on an practicing pediatric medicine, this for thrombosis, and we consid- SLE cohort that included pediatric reality is all too familiar. In such ered anticoagulation, However, we patients with SLE cared for by situations, we are used to relying were unable to find studies per-clinicians in our division between on evidence at Levels III through V taining to anticoagulation in our October 2004 and July 2009. This - expert opinion - or resorting patient's situation and were there- "electronic cohort" was originally to anecdotal evidence. What should fore reluctant to pursue that created for use in studying comwe do, though, when there aren't course, given the risk of bleeding. plications associated with pediatwe don't have a single anecdote matology colleagues — a review col approved by our institutional

Of the 98 patients in our pediatric lupus cohort, 10 patients developed thrombosis, documented Without clear evidence to guide in the EMR, while they were acutesus (SLE). Our patient's presenta- us and needing to make a deci- ly ill. The prevalence was higher

10.1056/NEJMP1108726 NEJM.ORG

EDITORIAL

The Promise of Electronic Records

Around the Comer or Down the Road?

Ashish K. Jha, MD, MPH

N 2009, THE US CONGRESS PASSED THE HEALTH INFORmation Technology for Economic and Clinical Health (HITECH) Act, which offers nearly \$30 billion in financial incentives to physicians and hospitals that adopt and choose to meaningfully use electronic health records (EHRs).1 The act is meant to help a health care system that consumes \$2.5 trillion each year and produces health care that is below the standards of safety. quality, and efficiency that should be expected in the United States. There is broad consensus among US policy makers that EHRs will play a key role in transforming health care into a safer, more effective, and more efficient

Despite the promise of EHRs (often referred to as electronic medical records or EMRs), recent data on their benefits have been disappointing. Although studies have consistently shown that EHRs can help clinicians adhere to guideline-based care and reduce medication errors,2,3 beyond these narrow benefits, there is little evidence that EHRs improve patient outcomes and even less evidence that they improve the efficiency of care.4 The lackluster data on the benefits of EHRs have led to a marketplace where EHR adoption has been underwhelming: based on the latest estimates, only a third of ambulatory care physicians5 and an even smaller minority of US hospitals are using EHRs6 (broadly defined as electronic systems that incorporate electronic prescribing, clinical notes, results management, and basic clinical decision support).7 Because of the slow adoption of EHRs, the US Congress included incentives in HITECH.

In this sea of disappointing data about EHRs comes some good news. In an innovative study published in this week's JAMA, Murff and colleagues8 push beyond the traditional uses of the EHR by demonstrating that natural language processing, when applied to electronic data, can help clinicians track adverse events after surgery. To many readers, the topic may appear esoteric, but its significance should not be underestimated. Instead, these findings suggest that EHRs can transform health care

See also p 848.

880 JAMA, August 24/31, 2011-Vol 306, No. 8

Until now, much of the benefits from EHRs have appeared to come from decision support capabilities,9 such as offering advice on avoiding 2 drugs with serious drug-drug interactions.3 Decision support is essentially a set of rules applied to structured data such as laboratory test results or a list of active medications. These rule-based capabilities are low-hanging fruit because they rely on what electronic systems do best-store and run algorithms on structured data. Yet there is so much more that EHRs could and should be able to do.

Electronic health records will create greater value for clinicians when they allow clinicians and quality managers to reliably identify adverse events and track them over time. Their value as quality measurement tools will improve substantially when EHRs can automatically generate quality measures that account for the reasons guideline-driven care is adhered to or, if not, why not. Currently, few EHR systems can do these things reliably, primarily because much of the required information resides in "unstructured" form within clinicians' notes. These notes are rich in detail about signs and symptoms of patients' conditions, their priorities for clinical care, and their willingness to take some medications but not others. The notes often offer insights into why the clinician chose one medication over another, how patients responded to treatment, and other specifics key to understanding the care patients receive. Clinical notes have to be read manually to extract these details, which limits the ability of clinicians or researchers to examine large numbers of clinical encounters quickly and efficiently. Natural language processing has the potential to alter the landscape by analyzing the context of words and phrases in medical records making them available for computer processing, resulting in the ability to automatically inter-

Although no consensus definition of natural language processing exists, it is widely used to describe a field of computational linguistics that allows computers to understand human language. Natural language processing has been pursued for half a century, and although it is used in other in-

Author Affiliations: Department of Health Policy and Management, Harvard School of Public Health, Dockion of Goment Medicine, Brigham and Women's Hospital, and the VA Boston Healthcare System, Boston, Massachusetts.

Corresponding Author: Adahis K. Jia, M.D., MPH, Department of Health Policy and Management, Harvard School of Public Health, 677 Huntington Ave, Boston, MA 02115 (jughtelbyth Janvard edu).

©2011 American Medical Association. All rights reserved

Natural Language Processing has higher sensitivity in EMR outcome assessment compared to ICD-9

Table 3. Comparison of a Natural Language Processing–Based Approach to the Agency for Healthcare Research and Quality Patient Safety Indicators in Identifying Postoperative Complications

Occurrence	Event Rate	Test Characteristic	Natural Language Processing	Patient Safety Indicator	P Value
Acute renal failure	39/1924	Sensitivity	0.82 (0.67-0.91)	0.38 (0.25-0.54)	<.001
		Specificity	0.94 (0.93-0.95)	1.00 (1.00-1.00)	<.001
Pulmonary embolism/ deep vein thrombosis	46/2327	Sensitivity	0.59 (0.44-0.72)	0.46 (0.32-0.60)	.30
		Specificity	0.91 (0.90-0.92)	0.98 (0.98-0.99)	<.001
Sepsis	61/866	Sensitivity	0.89 (0.78-0.94)	0.34 (0.24-0.47)	<.001
		Specificity	0.94 (0.93-0.96)	0.99 (0.98-0.99)	<.001
Pneumonia	222/1405	Sensitivity	0.64 (0.58-0.70)	0.05 (0.03-0.09)	<.001
		Specificity	0.95 (0.94-0.96)	0.99 (0.99-1.00)	<.001
Myocardial infarction	35/1822	Sensitivity	0.91 (0.78-0.97)	0.89 (0.74-0.96)	.67
		Specificity	0.95 (0.94-0.96)	0.99 (0.98-0.99)	<.001

©2011 American Medical Association. All rights reserved.

Automated Identification of Postoperative Complications Within an Electronic Medical Record Using Natural Language Processing

farvey J. Murff, MD, MPH
Forn FitzHenry, RN, PhD
fitchaef E. Matheny, MD, MSc, MPH
Sancy Gentry, RN
tristen L. Kotter, MS
Graberly Crimin, PhD

risten L. Kotter, MS imborly Crimin, PhD obert S. Dietus, MD, MPH my K. Rosen, PhD eter L. Elkin, MD eter L. Elkin, MD cheodore Speroff, PhD

MYTENVISIO ZALITY REmedia san important priority. Too
method for identifying aftery concerns is though severain galactiv
cores and the property of the concerns in though severain galactiv
classification of Diviness, Nisths Revision, Clinical Modification (ICD-9CM) codes that might be suggester of
an embed injury. To expand on the
severain and Quality developed as not
20 measures, known as the pattern
aftery indiciouse, which was administratifyed data to screen for potential adverse events that locate of the priority of the
several conditions.

entext Currently most automated methods to identify patient safety occurrences by on administrative data codes; however, free-text searches of electronic medical cords could represent an additional surveillance approach.

n, Setting, and Patients Cross-sectional study involving 2974 patients un-

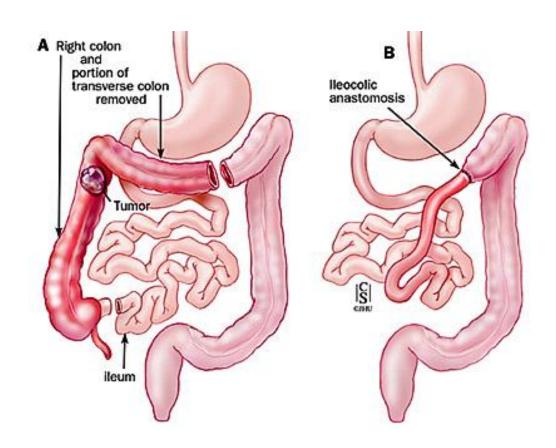
al centers from 1999 to 2006. **Nain Outcome Measures** Postoperative occurrences of acute renal failure requiring dialysis, deep vein thrombosis, pulmonary embolism, sepsis, pneumonia, or myoardial infarction identified through medical record review as part of the VA Surgical

performance with patient safety indicators that one discharge coding informations presented. The proportion of protectpative enemy for each surprise surprise (50 per 1950) are acute rend failure requiring delays, 0.7%; 18 of 2227; for pulmonary embotisms, 57, 599 of 2277; for experiments, and 13%; 55 of 1822 for implaced infection. Nature, 156, 522 of 4505 for parameters, and 13%; 55 of 1822 for implaced infection. Nature, 156, 522 of 4505 for parameters, and 13%; 55 of 1822 for implaced infection. Nature, 156, 522 of 4505 for parameters, 156, 523 of 1822 for implaced infection. Section of the 4505 for parameters, 156, 525 of 1822 for implaced infection. Section of the 4505 for parameters, 156, 525 of 1822 for implaced infection. Section of the 4505 for infection of the section of the 4505 for the section of the section of the 4505 for the section of the section of the 4505 for the

Conclusion Among patients undergoing inpatient surgical procedures at VA med cal corders, natural language processing analysis of electronic medical records to ide 89 postoperative complications had higher sensitivity and lower specificity compare with natient safety inclusions based on discharge coding.

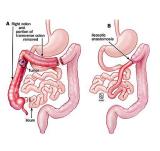
www.jar

Anastomosis leakage is a common complication in GI surgery

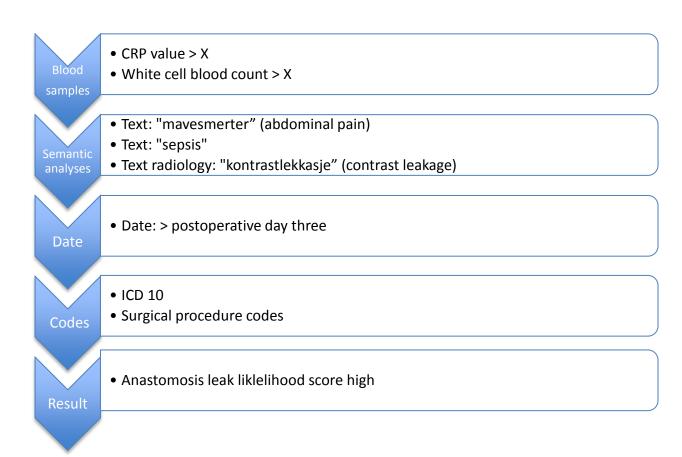


In my own department we observed a 25% reduction in anastomosis leakage

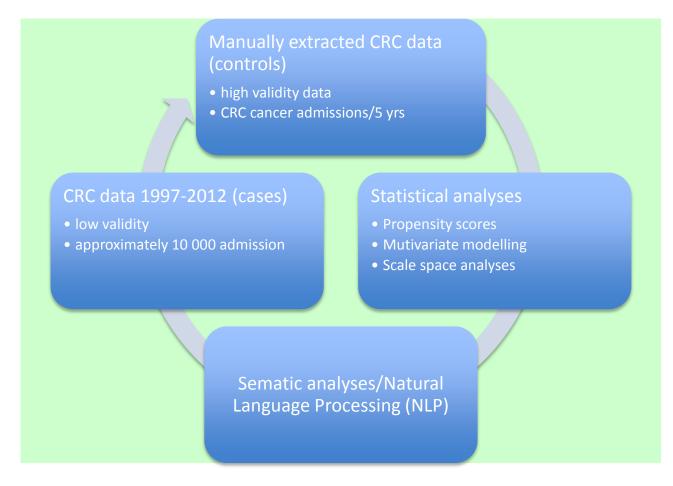
	2006	2007	2008	2009	2010
Number of procedures	84	80	87	91	91
% anastomotic leak rate	11	31	17	15	5

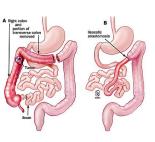


EMR identification of anastomoses leakage equals a combination of different types of data



Manually extracted EMR data will be used for controls





We will use our experiences to identify other adverse events

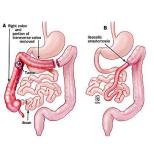
Example case: Colorectal cancer

Anastomoses leakage, deep vein thrombosis, pulmonary embolism, wound infection, pneomonia, urinary tract infection, renal failure, myocardial infarction, and others

Expand to other diseases/conditions

Expand to other departments

- 1) EMR application outcome assessment
- 2) EMR applications for personalised medicine, process management and risk assessment



Disease phenotyping is algorithmic recognition of any cohort within EMR for a defined purpose

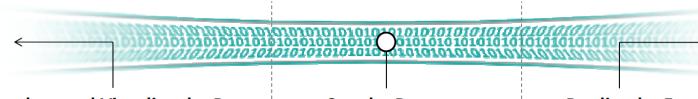
Abnormal lab values Case medications ICD-9 codes for hypothyroidism ICD-9 codes for secondary 244, 244.8, 244.9, 245, 245.2, 245.8, 245.9 TSH > 5 OR FT4 < 0.5 levothyroxine, synthroid, causes of hypothyroidism levoxyl unithroid, 244.0, 244.1, 244.2,244.3 armour thyroid, desicated thyroid, cytomel, triostat, liothyronine, synthetic triiodothyronine, Case Definition liotrix, thyrolar Case 1: ICD-9 codes for post surgical or ICD-9 code for hypothyroidism OR abnormal TSH/FT4 post radiation hypothyroidism Antibody lab tests 193*, 242.0, 242.1, 242.2, Thyroid replacement medication use Anti-thyroglobulin antibodies: H-Require at least 2 instances of either medication or lab with at 242.3,242.9, 244.0, 244.1, 244.2, TGA, ThyrAB, AThyg-positive least 3 months between the first and last instance of medication 244.3, 258* Anti-thyroperoxidase: H-TPO. and lab TPO, AThyP - positive Anti-thyroid antibodies: ThyAb -Case 2: positive Anti-thyroid, anti-thyroglobulin, OR anti-thyroperoxidase CPT codes for post radiation antibodies hypothyroidism 77261, 77262, 77263, 77280, 77285 Pregnancy exclusion ICD 9 77290, 77295, 77299, 77300,77301, Case Exclusions 77305, 77310, etc. (if present with abnormal TSH or Exclude if the following information occurs in the record FT4 within six months before pregnancy to one year after Secondary causes of hypothyroidism **Exclusion keywords** pregnancy cannot be a case) Post surgical or post radiation hypothyroidism multiple endocrine neoplasia, MEN V22.1, V22.2, 631, 633, 633.0, Other thyroid diseases I, MEN II, thyroid cancer, thyroid 633.00, 633.1, 633.10, 633.20, Thyroid altering medication 633.8, 633.80, 633.9, 633.90, carcinoma 645.1, 645.2, 646.8, etc. Case Exclusions Temporally sensitive exclusions Exclusion keywords Thyroid-altering medications optiray, radiocontrast, iodine, Phenytoin, Dilantin, Infatabs, Recent pregnancy TSH/FT4 omnipaque, visipaque, hypaque, Dilantin Kapseals, Dilantin-125, Recent contrast exposure ioversol, diatrizoate, iodixanol, Phenytek, Amiodarone Pacerone, isovue, iopamidol, conray, Cordarone, Lithium, Eskalith, iothalamate, renografin, sinografin, Lithobid, Methimazole, Tapazole, cystografin, conray, iodipamide Northyx, Propylthiouracil, PTU

Predictive modelling

IBM Content and Predictive Analytics ... Ready for Watson
Complements IBM Watson to analyze and visualize past,
present and future scenarios in context

Question What is Known

Complement ICPA with <u>Watson for Healthcare</u> to get real time, confidence based answers with evidence based learning



Analyze and Visualize the Past

Understand trends,
patterns, deviations, anomalies, context
and more in large corpuses of historical
clinical and operational information to
reveal new insights

See the Present

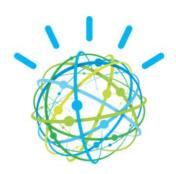
Analyze and extract text from in-process documents or other information to find structured data errors ... feed the results to other cases and systems

Predict the Future

Use predictive models and scoring to make more informed decisions through predictive and future scenario modeling

Workshop TTL-IBM New York 30-31/5 Topic: predictive analytics and adverse outcomes

Clinical Decision Support: DeepQA
Martin S. Kohn, MD, MS, FACEP, FACPE
Chief Medical Scientist, Care Delivery Systems
IBM Research



Agenda for TTL - Day 1Hawthorne Industry Solutions Lab

Time Demo Duration (minutes)

Topic

Speakers

Availability

09:00 AM 15 Welcome and Introductions

Comments: Bob Stackhouse Proposed

09:15 AM 90 TTL Overview and Briefing Objectives

Comments: The Medical Problem, Methods of Disease phenotyping, of unstructured EMR data, TTL Proposed

10:45 AM 15 Break

Comments:

11:00 AM 60 IBM Healthcare and Research Overview

Comments: Joe Jasinski Proposed

12:00 PM 30 General Discussion relative to TTL and IBM morning presentations

Comments:

12:30 PM 60 Lunch

Comments:

© 2009

01:30 PM 60 Healthcare Analytics

Comments: John Piccone Proposed

02:30 PM 15 Break

Comments:

02:45 PM 60 Patient Similarity Analytics

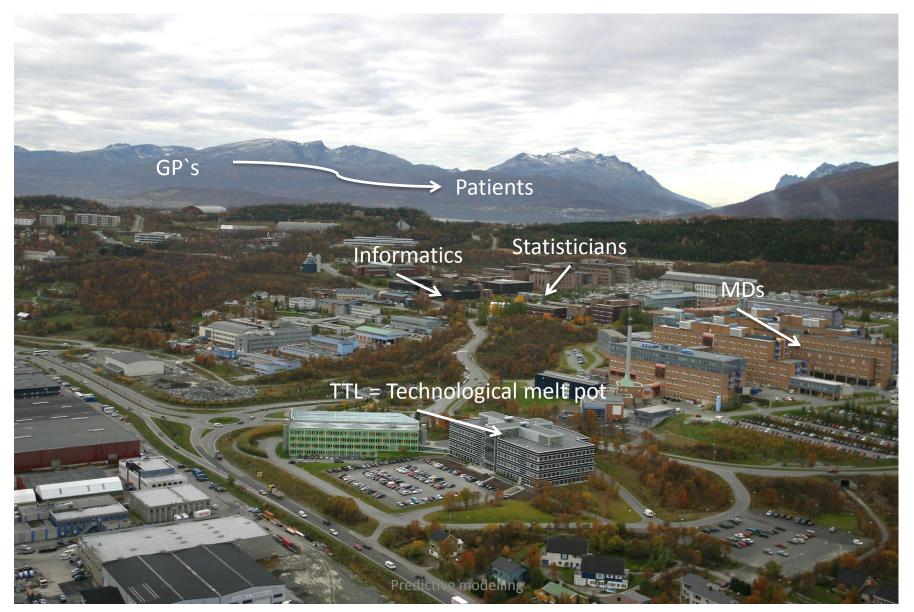
Comments: Shahram Ebadollahi Proposed

03:45 PM 15 Review of Day 1 Topics and Action Items

Comments:

04:00 PM 0 Adjourn Day 1

Comments:



Get on Board the Medical Data Train—It Is Leaving the Station: Destination 2014.

Doarn, C. R., & Merrell, R. C. (2010). Telemedicine and e-Health, 16(7), 755-756.

